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A uniqueness theorem of molecular recognition
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Phrased in terms of electron density deformations due to molecular interactions, an opti-
mality condition, and the fundamental holographic properties of molecular electron densities,
it is shown that molecular recognition is necessarily unique. A simple proof is given and the
connections of this result with the Duality Principle of Molecular Recognition and related
Selectivity Measures for molecular recognition are discussed.
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1. Introduction

In some interpretations of the wide-ranging phenomena of molecular recognition,
it is assumed that some fundamental aspects of the theory of pattern recognition are
applicable. For example, the pattern recognition methods employed for the identifica-
tion of hydrogen-bonded structural features and related geometrical features in proteins,
themselves primary examples of molecular recognition, may mimic some aspects of the
actual recognition processes involved in the molecular world [1,2]. It is well under-
stood that the shapes of molecular electron density clouds are the primary players in
molecular recognition, and the mutual shape conditions, especially shape similarity and
shape complementarity of molecular electron densities are responsible for the degree
and specificity of molecular recognition.

The quantum chemical analysis of molecular shapes, involving the complete elec-
tron density clouds in a variety of possible nuclear conformations has a long history.
Motivated in part by higher-dimensional shape analysis approaches applied to poten-
tial energy hypersurfaces [3], some of the early approaches have involved the shape
group methods and related techniques [4–11], based on a differential and algebraic topo-
logical study of an infinite sequence of nested molecular isodensity contour surfaces
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(MIDCO’s). The shape groups are homology groups of curvature-based truncations of
complete families of MIDCO surfaces.

Alternative molecular shape analysis methods have been introduced by combining
discrete mathematical methods pioneered by Harary as applied to various molecular
descriptors [12–14].

The specificity aspect of molecular recognition involves molecular similarity and
dissimilarity. Based on the shape of the electron density cloud, various methods de-
veloped for the assessment of the degree of molecular similarity, including several ap-
proaches to the assessment of the degree of molecular chirality, have been studied from
a topological perspective [15–20]. A detailed account of the early approaches is found
in reference [21]. A major change of direction has become possible by the introduction
of the first practically applicable ab initio quality macromolecular quantum chemistry
techniques, based on the additive fuzzy density fragmentation (AFDF) approach and the
development of explicit macromolecular density matrix methods [22–27]. In particular,
the adjustable density matrix assembler (ADMA) technique [26,27] is suitable to gener-
ate ab initio quality macromolecular density matrices for molecules as large as proteins,
leading to the computation of all macromolecular properties accessible if a density ma-
trix and the associated atomic orbital basis set is available. The calculated properties
include the forces acting on individual atomic nuclei of the protein; hence, a practical,
ab initio quality quantum chemistry computational method is available to study the pro-
tein folding problem.

These developments have also opened the way to the detailed shape analysis of
both global and local ranges of macromolecules [28–48]. It is often, but not always
sufficient to focus the analysis on a specific local range of a macromolecule, and a local
analysis has become possible without loosing the validity of the quantum chemistry
approach.

2. Information content and the relation between global and local molecular
information

Density functional theory has been established as a valid framework for molecular
physics [49]. Although many of the approximations involved in the actual computational
applications of the theory still involve approaches justified only by their practical suc-
cess in reproducing many (but not all) physical properties of molecules, the theoretical
framework provides intuitively transparent and appealing approaches. One fundamental
relation of this theory, the Hohenberg–Kohn theorem [50] states that a non-degenerate
ground state electron density of any molecule fully determines the energy (and through
the Hamiltonian) all other ground state properties of the molecule. That is, the infor-
mation about non-degenerate ground state properties of the molecule is fully contained
within such electron density.

For artificial molecular models, restricted to a bounded volume of the space and
having finite boundaries, Riess and Münch [51] have shown that any positive subvolume
of such finite and bounded electron density can be extended uniquely to the density in
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the bounded volume with finite boundaries. In a later development, Mezey has estab-
lished the Holographic Electron Density Property [52–56], valid for real, boundaryless
molecules: any positive volume part of the non-degenerate ground state electron density
of any molecule is already fully sufficient to determine the energy and all other ground
state properties of the molecule. That is, the information about non-degenerate ground
state properties of real, boundaryless molecules is fully contained within any positive
volume part of the electron density.

Subject to the condition of nondegeneracy for the ground state electron density, it
is now established that the information in the part contains all the information about the
whole.

3. The Supramolecular Holographic Electron Density Theorem in the context
of molecular recognition

Consider a supramolecular object, for example, the interacting pair ED of an
enzyme E and a drug molecule D. We shall assume that the electron distributions
of all these molecules are characterized by non-degenerate ground states. The entire
supramolecular object can be regarded as a single entity. Although the very fact that
these two molecules are able to form an identifiable single object implies that some
degree of mutual recognition manifested in the interaction of the two molecules takes
place, nevertheless, it is reasonable to refer to the new supramolecular object as a com-
bination of two, originally independent molecules. The recognition process itself can be
regarded as a change from the non-interactive states of the two molecules to the inter-
acting supramolecular entity. Consequently, the information about the recognition itself
must be contained in the change of the electron density as the independent molecules
combine and form a single supramolecular object.

Consider a nonzero volume part P ′ of the electron density of independent mole-
cule E, for example, a spherical volume about a specific nucleus X of molecule E.
According to the holographic electron density theorem, this volume P ′ contains all the
information about independent molecule E. Consider now the same nonzero volume
part P (for example, the spherical volume of the same radius about the same nucleus X)
in the supramolecular object ED. Although this volume was origially specified for the
independent molecule E, nevertheless, according to the Holographic Electron Density
theorem as applied to the entire supramolecular object, this volume P now contains all
the information about the supramolecular object ED. This result, although rather obvi-
ous based on the original holographic electron density theorem, is of special significance
and it appears worthwhile to emphasize it as a fundamental aspect of supramolecular
chemistry:

The Supramolecular Holographic Electron Density Theorem (The Supramolecular
Holographic Electron Density Theorem). If P is a nonzero volume within a molecu-
lar component E in a supramolecular assembly ED, where the electron density of the
supramolecular object ED is characterized by a non-degenerate ground state, than the
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electron density in this volume P contains all information about the entire supramolec-
ular object ED, specifically, all information about all other molecular components D as
they occur within the supramolecular object ED.

4. The duality principle of molecular recognition

It is rather evident that if a molecule A recognizes another molecule B, for exam-
ple, by temporarily forming a complex, or by undergoing a specific chemical reaction,
then the interaction process involved in the recognition affects both molecules, although
possibly to a different degree. The actual recognition is a process characteristic to the
given pair of molecules. Whereas the roles of the two molecules are seldom symmet-
ric, nevertheless, the recognition is mutual, even if the associated changes in the two
molecules and the degrees of selectivities concerning the interactions with this and other
potential partners are different. The process of molecular recognition is characterized by
a (possibly asymmetric) duality, where the roles of the recognizer molecule A and the
recognized molecule B can be interchanged.

The changes involved in the recognition process can be analyzed using the electron
density shape analysis methods.

Consider the following electron densities:
ρA the electron density of independent molecule A;
ρB the electron density of independent molecule B;
ρAB the electron density of interacting molecule pair AB;
ρA(AB) the electron density of fragment A within interacting molecule pair AB (as

obtained by the AFDF density fragmentation process applied to molecule
pair AB);

ρB(AB) the electron density of fragment B within interacting molecule pair AB (as
obtained by the AFDF density fragmentation process applied to molecule
pair AB).

By carrying out a shape group analysis on these densities and calculating their shape
similarities, the similarities s(ρA, ρA(AB)) and s(ρB, ρB(AB)) are of special importance.

If

s(ρA, ρA(AB)) < s(ρB, ρB(AB)) (1)

then molecular component A is affected by a greater degree in the recognition process,
since independent molecule A is less similar to the interacting molecule A, when com-
pared to the change in the case of molecule B. (By re-assigning labels A and B, the roles
can be reversed.) Nevertheless, these similarities are practically never perfect, that is

s(ρB, ρB(AB)) = 1 (2)

almost never happens, implying that the recognition process introduces at least some
changes in the electron densities of all molecules involved.

For example, the shapes of fluorine atom moieties within molecules show remark-
able resistance to change, even if these very atoms may cause relatively large electron
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density deformations in the interacting partners. Thus, in such recognition processes,
the asymmetry is considerable.

Whereas some asymmetry of recognition as expressed by the inequality (1) is typ-
ical, in the case of a self-recognition process between two identical molecules along a
symmetric pathway, and in some other, presumably rare instances, perfect duality, as
measured by the shape group similarity measure, is possible:

s(ρA, ρA(AB)) = s(ρB, ρB(AB)). (3)

The aspect of selectivity of recognition can also be treated in terms of shape group
similarity measures.

Consider a family A of two molecules,

A = {A1, A2} (4)

in the role of recognizer, and a set B of k molecules to be recognized:

B = {B1, . . . , Bi, . . . , Bk}. (5)

With respect to family B, the selectivity of recognition of molecule Bi by molecule A1

can be characterized by the quantity t (A1, Bi)

t (A1, Bi) = min
k,k �=i

{
abs
[
s(ρA1, ρA(ABi))− s(ρA1 , ρA(ABk))

]}
. (6)

The greater this number, the greater is the smallest difference between the changes of
electron densities caused by the interaction between A1, and Bi , on the one hand, and the
next most similar change betweenA1, and any of the Bk molecules excluding Bi . That is,
the greater this number t (A1, Bi), the greater the selectivity of molecule A1 recognizing
molecule Bi from the given family B. If

t (A1, Bi) > t(A2, Bi), (7)

then molecule A1 is more selective in recognizing molecule Bi from the molecular fam-
ily B than molecule A2.

5. The Uniqueness Theorem of Molecular Recognition

The recognition responses of a small child are different when he recognizes his
mother or the doctor who has given him a shot already, and even in the case of his mother
approaching him in full view or surprises him from behind, the recognition response
is different. Similarly, the range of responses in the recognition processes of a given
molecule with various partner molecules and in various mutual arrangements are also
expected to be different. It is well understood that a given molecule can recognize a
large number of other molecules, however, what appears to be unique is the response in
each different case. Here we shall make a precise statement concerning the uniqueness
of molecular recognition in the case of each molecule pair, for each different mutual
arrangement.
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Since the molecular electron densities have primary roles in molecular recognition,
it is natural to characterize the recognition process in terms of electron densities.

Consider an A,B pair of molecules involved in the recognition process and the
electron densities ρA, ρB, ρAB, ρA(AB), and ρB(AB) discussed in the previous section.
The difference densities �ρA(AB), and �ρB(AB) are defined as

�ρA(AB) = ρA(AB) − ρA, (8)

and

�ρB(AB) = ρB(AB) − ρB, (9)

respectively. These two quantities can be regarded as the individual electron density re-
sponses of molecules A and B to the interaction associated with their mutual recognition
process. Whereas the holographic theorem applies to densities ρA and ρB , it does not
directly apply to fuzzy density fragments ρA(AB) and ρB(AB). However, it does apply
to the supramolecular object AB, hence to density ρAB . Consequently, the difference
densities �ρAB\A, and �ρAB\B , defined as

�ρAB\A = ρAB − ρA, (10)

and

�ρAB\B = ρAB − ρB, (11)

respectively, also have the holographic property, as long as molecule A is specified for
�ρAB\A, and molecule B is specified for �ρAB\B , and an optimality condition is also
specified for the relative geometrical placements of the interacting and non-interacting
molecules.

With reference to the interacting molecule pair AB, take a positive volume P .
Since the holographic theorem applies for the corresponding non-degenerate ground
electronic states, the difference densities �ρAB\A and �ρAB\B , restricted to the vol-
ume P , fully determine the complete difference densities �ρAB\A and �ρAB\B , respec-
tively. Consequently, both the local and the global electron density responses involved
in A recognizing B and B recognizing A are unique. This proves the following:

Uniqueness Theorem of Molecular Recognition. Molecular recognition, as monito-
red by changes of electron densities in any positive volume P , is necessarily unique,
characteristic to the given molecule pair with the given mutual arrangement.

6. Conclusions

Whereas the main statement of this study, the Uniqueness Theorem of Molecular
Recognition is a plausible result on intuitive grounds, nevertheless, the proof presented
here provides justification for regarding the detailed analysis of molecular recognition
processes as molecular fingerprinting, sufficient, in principle, for unambiguous identifi-
cation of molecules.
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